Researchers from the University of Birmingham have designed a novel adaptation for existing iron and steel furnaces that could reduce carbon dioxide emissions from the steelmaking industry by nearly 90 per cent.
The radical reduction is achieved through a ‘closed loop’ carbon-recycling system that could replace 90 per cent of the coke typically used in current blast-furnace-basic oxygen furnace systems and produces oxygen as a by-product.
Devised by Professor Yulong Ding and Harriet Kildahl from the university’s School of Chemical Engineering, the system, if implemented in the UK alone, could deliver cost savings of £1.28billion in five years while reducing overall UK emissions by 2.9 per cent.
‘Current proposals for decarbonising the steel sector rely on phasing out existing plants and introducing electric arc furnaces powered by renewable electricity,’ said Professor Ding. ‘However, an electric arc furnace plant can cost more than £1billion to build, which makes this switch economically unfeasible in the time remaining to meet the Paris Climate Agreement. The system we are proposing can be retrofitted to existing plants, which reduces the risk of stranded assets, and both the reduction in CO2, and the cost savings, are seen immediately.’
Most of the world’s steel is produced via blast furnaces, which produce iron from iron ore, and basic oxygen furnaces, which turn that iron into steel. The process is inherently carbon intensive, using metallurgical coke produced by destructive distillation of coal in a coke oven, which reacts with the oxygen in the hot air blast to produce carbon monoxide. This reacts with the iron ore in the furnace to produce CO2. The top gas from the furnace contains mainly nitrogen, CO and CO2, which is burned to raise the air blast temperature up to 1,200–1,350°C in a hot stove before being blown into the furnace, with the CO2 and N2 (also containing NOx) emitted to the environment.
The novel recycling system captures the CO2 from the top gas and reduces it to CO using a crystalline mineral lattice known as a perovskite material. The material was chosen as the reactions take place within a range of temperatures (700–800°C) that can be powered by renewable energy sources and/or generated using heat exchangers connected to the blast furnaces.
Under a high concentration of CO2, the perovskite splits CO2 into oxygen, which is absorbed into the lattice, and CO, which is fed back into the blast furnace. The perovskite can be regenerated to its original form in a chemical reaction that takes place in a low-oxygen environment. The oxygen produced can be used in the basic oxygen furnace to produce steel.
Iron- and steelmaking is the biggest emitter of CO2 of all the foundation industrial sectors, accounting for nine per cent of global emissions. According to the International Renewable Energy Agency, it must achieve a 90 per cent reduction in emissions by 2050 to limit global warming to 1.5°C.
University of Birmingham Enterprise has filed a patent application covering the system and its use in metal production and is looking for long-term partners to participate in pilot studies, deliver this technology to existing infrastructure, or collaborate on further research to develop the system.
The research has been published in the Journal of Cleaner Production.