• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
Engineering Designer Magazine

Engineering Designer

  • Home
  • Technology
  • Education
  • Sustainability
  • Materials
  • Medical
  • Construction
  • Advertise
  • iED
You are here: Home / Technology / Quantum dots used to create daylight

Quantum dots used to create daylight

September 2, 2022 by Geordie Torr

Researchers at the University of Cambridge have designed smart, colour-controllable white light devices from quantum dots – tiny semiconductors just a few billionths of a metre in size – that are more efficient and have better colour saturation than standard LEDs, and can dynamically reproduce daylight conditions in a single light.

Advertisement

The researchers designed the next-generation smart lighting system using a combination of nanotechnology, colour science, advanced computational methods, electronics and a unique fabrication process.

The team found that by using more than the three primary lighting colours used in typical LEDs, they were able to reproduce daylight more accurately. Early tests of the new design showed excellent colour rendering, a wider operating range than current smart-lighting technology and a wider spectrum of white-light customisation.

Advertisement

As the availability and characteristics of ambient light are connected with well-being, the widespread availability of smart lighting systems can have a positive effect on human health, since these systems can respond to individual moods. Smart lighting can also respond to circadian rhythms, which regulate the daily sleep–wake cycle, so that light is reddish-white in the morning and evening, and bluish-white during the day.

When a room has sufficient natural or artificial light, good glare control and views of the outdoors, it’s said to have good levels of visual comfort. In indoor environments under artificial light, visual comfort depends on how accurately colours are rendered. Since the colour of objects is determined by illumination, smart white lighting needs to be able to accurately express the colour of surrounding objects. Current technology achieves this by using three different colours of light simultaneously.

Quantum dots have been studied and developed as light sources since the 1990s, due to their high colour tunability and colour purity. Thanks to their unique optoelectronic properties, they show excellent colour performance in both wide colour controllability and high colour-rendering capability.

The Cambridge researchers developed an architecture for quantum-dot light-emitting diodes (QD-LED) based on next-generation smart white lighting. They combined system-level colour optimisation, device-level optoelectronic simulation and material-level parameter extraction. They also produced a computational design framework from a colour optimisation algorithm used for neural networks in machine learning, together with a new method for charge transport and light-emission modelling.

The QD-LED system uses multiple primary colours – beyond the commonly used red, green and blue – to more accurately mimic white light. By choosing quantum dots of a specific size – between three and 30 nanometres in diameter – the researchers were able to overcome some of the practical limitations of LEDs and achieve the emission wavelengths they needed to test their predictions.

The team then validated their design by creating a new device architecture of QD-LED-based white lighting. The test showed excellent colour rendering, a wider operating range than current technology and a wide spectrum of white-light-shade customisation.

The Cambridge-developed QD-LED system showed a correlated colour temperature (CCT) range from 2243K (reddish) to 9207K (bright midday sun), compared with current LED-based smart lights, which have a CCT of between 2200K and 6500K. The colour rendering index (CRI) – a measure of colours illuminated by the light in comparison to daylight (CRI = 100) – of the QD-LED system was 97; current smart bulbs range from 80 and 91.

The design could pave the way to more efficient, more accurate smart lighting. In an LED smart bulb, the three LEDs must be controlled individually to achieve a given colour. In the QD-LED system, all of the quantum dots are driven by a single common control voltage to achieve the full colour-temperature range.

‘This is a world first: a fully optimised, high-performance quantum-dot-based smart white lighting system,’ said Professor Jong Min Kim from the Department of Engineering. ‘This is the first milestone toward the full exploitation of quantum-dot-based smart white lighting for daily applications.’

‘The ability to better reproduce daylight through its varying colour spectrum dynamically in a single light is what we aimed for,’ said Professor Gehan Amaratunga, who co-led the research. ‘We achieved it in a new way through using quantum dots. This research opens the way for a wide variety of new human responsive lighting environments.’

The structure of the QD-LED white lighting developed by the Cambridge team is scalable to lighting surfaces with large areas because it’s made using a printing process and its control and drive are similar to that in a display. Standard point source LEDs require individual control, which makes this is a more complex task.

The research has been published in Nature Communications.

Filed Under: Technology

Advertisement

Primary Sidebar

SUBSCRIBE And get a FREE Magazine

Want a FREE magazine each and every month jam-packed with the latest engineering and design news, views and features?

ED Update Magazine

Simply let us know where to send it by entering your name and email below. Immediate access.

Trending

Tiny robots inspiored by click beetles

Collaborators create innovative geotechnical sensor for road monitoring

Scientists develop precision arm for miniature robots

Engineering start-up secures investment for technology to release seized nuts and bolts

British company to design green gas-to-power barges for Greek islands

New micro-battery could be used to power tiny robots

Made in Britain and the British Design Fund team up for 2023

New corrosion sensor offers several benefits

Caltech launches space solar power project

Scientists create novel steel-bronze alloys

Footer

About Engineering Designer

Engineering Designer is the quarterly journal of the Insitution of Engineering Designers.

It is produced by the IED for our Members and for those who have an interest in engineering and product design, as well as CAD users.

Click here to learn more about the IED.

Other Pages

  • Contact us
  • About us
  • Privacy policy
  • Terms
  • Institution of Engineering Designers

Search

Tags

ied

Copyright © 2023 · Site by Syon Media